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Abstract

Vessel queuing procedures at maritime ports may induce strategic
changes in the polluting activities of transport operators. This paper
documents a reduction in vessel emissions following the introduction of
San Pedro Bay’s new ETA-based queuing system. Using geospatial ves-
sel position data in monitored US coastal areas, alongside records of
vessel departures at foreign ports of origin, I show that the global emis-
sions of containership voyages servicing Los Angeles and Long Beach
declined, on average, by 10%. The added certainty of vessel admittance
times incentivized ships to slow their voyage speeds and strategically
limit local wait times. However, guaranteed queue positions also attract
greater commercial activity, which led to an overall deterioration in local
air quality, despite per-vessel emissions falling.
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1. Introduction

In the final months of 2021, the image of dozens of container ships idling off the

coast of Southern California became a symbol of pandemic-era supply chain break-

downs. Nowhere was this congestion more visible than in the San Pedro Bay port

complex, the combined operations of the Ports of Los Angeles and Long Beach.

Together, this commercial hub receives 40 percent of US containerized imports. Yet

behind the headline-grabbing gridlock, a subtle environmental issue developed. Ves-

sel congestion and extended idling outside the ports came with a surge in local air

pollution. The operational protocols that had governed vessel arrivals for decades

had inadvertently shifted an environmental externality, normally concentrated near

port terminals, onto coastal communities and ecosystems.

This paper investigates a recent logistical intervention aimed at mitigating local

externalities associated with vessel congestion, the introduction of an estimated time

of arrival (ETA) based vessel queuing system for container ships visiting Los Angeles

and Long Beach. The new queuing system was announced and implemented within

a five-day window in November 2021, offering little time for advanced behavioral

adjustment by shipping firms or carriers. This abrupt rollout created conditions

well-suited for a quasi-experimental research design, enabling causal inference by

comparing outcomes before and after the policy among treated and control ports.

This decision replaced the longstanding “first-come, first-served” queuing proto-

col with a new system that allocates queue positions based on each vessel’s estimated

arrival time upon departure from a prior port. By removing the incentive to race

toward port, and influence queue position, an ETA system may encourage vessels to

slow their transit, reducing congestion and offshore anchorage accumulation. Addi-

tionally, the new system mandates that vessels remain 150 nautical miles offshore

while awaiting admittance, rather than queuing in the shallow bay area. This second

detail potentially increases fuel consumption due to greater vessel repositioning and

a need to counter stronger open-sea currents. The policy was designed to improve

navigational safety, streamline vessel flow, and curb emissions from idling ships near

densely populated coastal regions. I study how this operational shift altered ves-

sel behavior, with particular emphasis on changes to queuing dynamics, emissions

intensity, and ambient air quality in adjacent communities.

The environmental costs of maritime trade have received growing attention in

recent years. While global shipping accounts for approximately 3 percent of car-

bon emissions (IMO, 2021), it is a disproportionately large contributor to localized

air pollutants such as NOX , SO2, and PM2.5, particularly in coastal urban areas.
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Maritime transportation of goods has also grown dramatically, further concentrat-

ing these damages. From 1965 to 2020, the cargo weight of short-distance maritime

trade increased by 45 percent, while long-haul shipping more than doubled (Ganap-

ati and Wong, 2023). Approximately 70 percent of maritime emissions are released

within 400 kilometers of coastlines (Corbett et al., 2007), exacerbating health risks in

nearby populations, including elevated asthma rates, cardiopulmonary disease, and

premature mortality (Capaldo et al., 1999; Liu et al., 2016; Gillingham and Huang,

2021; Zhang et al., 2021). Yet empirical identification of these effects has been hin-

dered by the diffuse spatial and temporal structure of shipping activity, as well as the

presence of other emission sources near ports. By leveraging a quasi-experimental

change in port queuing practices, in which concentrated environmental exposure

occurs offshore and is subsequently relaxed, this paper provides a rare opportunity

to causally link operational logistics to localized environmental outcomes.

The analysis proceeds in three stages. First, I construct a high-frequency panel of

containership activity by matching global port call records with minute-level vessel

position (AIS) data. This allows me to decompose each voyage into distinct stages:

oceanic transit from the prior port of origin, queuing behavior upon entering US

waters, and port admittance. Using vessel identifiers and geospatial overlays, I iso-

late international voyages to the West Coast and measure each ship’s transit speed,

queuing duration, and movement path. Second, I estimate transit emissions during

voyage and queuing stages by combining vessel-specific fuel consumption functions

(indexed by speed and capacity) with pollutant-specific emission factors. Third, I

use a difference-in-differences strategy to quantify the causal effect of the queuing

policy’s implementation on vessel emissions. Importantly, the expected treatment

effect is ambiguous ex ante. Vessels may reduce voyage-phase emissions due to

slower transit but may also incur greater emissions offshore due to repositioning and

extended queuing farther from shore.

I find that the policy encouraged a slowdown in vessel transit of 17 percent,

resulting in a 10.5 percent decline in voyage-phase emissions. It also reduced the av-

erage vessel’s offshore queuing duration and associated emissions by approximately

34 percent and 26 percent, respectively. However, during post-policy queuing, hourly

emissions rose by 11.6 percent, suggesting that the countervailing effect of open-sea

repositioning partially offset the system’s environmental gains. Taking both voyage

and queuing effects into account, I estimate an overall 11.2 percent decline in global

emissions from containerships inbound for San Pedro Bay attributable to the new

queuing system. Despite these reductions in per-vessel emissions, ambient pollution

levels near the ports increased following the policy’s implementation. Upon pairing
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my findings with AP3, an integrated assessment model that links air pollution to

monetary damages in the United States, I estimate that this policy introduced envi-

ronmental costs of $155-474mn. This contrast between declining emissions intensity

and rising total pollution illustrates a central policy dilemma. Gains in logistical

efficiency do not always translate into reductions in cumulative environmental dam-

age. In high-traffic freight environments, per-unit improvements can be outweighed

by scale effects, particularly if reforms enhance the commercial competitiveness of

treated locations. I document that the ports of Los Angeles and Long Beach expe-

rienced a relative increase in commercial throughput of approximately 20 percent

compared to other major West Coast facilities. These patterns suggest that im-

provements in queuing efficiency enhanced the ports’ competitive appeal, drawing

additional vessel traffic, on-site vehicle activity, and intermodal freight movement.

As a result, although the carbon intensity per unit of transported goods declined,

the total volume of on-site activity likely offset those gains. This highlights the

importance of disentangling improvements in operational efficiency from changes in

cumulative environmental impact.

This paper contributes to several strands of literature. First, it adds to studies

leveraging use of relatively modern transportation data (Heiland et al., 2019; Proc-

hazka et al., 2019; Tumbarello et al., 2019; Brancaccio et al., 2020; Wong, 2022;

Wong and Fuchs, 2022; Molina et al., 2024). The precision of automatic identifi-

cation system (AIS) data allows for the analysis of emissions control areas, vessel

routing, and slow steaming behavior (Klotz and Berazneva, 2022; Scott and Mayer,

2023). I apply a novel approach that infers vessel-level emissions by combining AIS

data with international port call records and pollutant conversion factors. This

approach enables high-resolution estimates of localized emissions to evaluate the en-

vironmental and trade consequences of queue reordering, an area still underexplored

in research dovetailing topics of energy, environment, operational research.

I also contribute to topics of transport congestion, environmental externali-

ties, and pollution regulation (Auffhammer and Kellogg, 2011; Kinney et al., 2011;

Cristea et al., 2013; Ngo et al., 2015; Shapiro, 2016; Rivera, 2021). Gillingham

and Huang (2021) finds that at-berth emissions in US ports contributed to reduced

childbirth weights. Similarly, Hansen-Lewis and Marcus (2022) concludes that US

maritime emissions control areas significantly decreased fine particulate matter, low

birth weight, and infant mortality. I complement these studies by analyzing a logis-

tical intervention that reduces emissions without imposing direct regulatory costs

on shippers. I isolate the effect of the introduction of an ETA-based queuing sys-

tem, controlling for strategic port switching, and highlight a sizable local emissions
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reduction attributed to decreased vessel idling. While limited to narrow geographic

regions, I also show that this stage of transit represents between 10 − 50% of total

transport time for inbound containerships along the US West Coast.

Third, I inform ongoing policy debates on maritime decarbonization. The In-

ternational Maritime Organization (IMO) aims to cut global shipping emissions

by 20-30 percent by 2030 and by at least 70 percent by 2040. Similarly, the U.S.

Department of Transportation’s National Blueprint for Transportation Decarboniza-

tion calls for cleaner fuels and operational reforms across freight modes.1 I add to the

policymaker toolkit by evaluating how low-cost adjustments in queuing procedures

could reduce maritime emissions. I show that queue restructuring can meaningfully

reduce emissions while boosting port throughput, a rare alignment of environmen-

tal and economic objectives. While small or uncongested ports may not experience

similar gains, large gateways with substantial queuing delays could benefit from

analogous procedural reforms. Ludwig (2025) warns that maritime carbon taxes

may depress port competitiveness. My findings highlight an alternative pathway to

emissions reductions with positive or neutral effects on throughput.

The remainder of the paper proceeds as follows. Section 2 outlines the insti-

tutional background of the queuing policy. Section 3 describes the data sources

and emissions estimation methodology. Section 4 presents the empirical strategy

and main results on transit behavior, emissions, local air quality, and port activity.

Section 5 estimates the monetary consequences of emission level adjustments in the

San Pedro Bay area. Section 6 concludes.

2. Background

The sharp rebound in U.S. consumer demand during the COVID-19 recovery led to

an unprecedented surge in maritime imports. Between October 2020 and Novem-

ber 2021, inbound container traffic to the United States rose by over 15 percent

year-on-year, more than four times the average annual growth rate over the prior

decade.2 The San Pedro Bay port complex, comprising the Ports of Los Angeles

and Long Beach, bore the brunt of this volume increase. As a result, the number of

containerships anchored offshore ballooned, leading to historically high congestion

and environmental strain.

This bottleneck had a marked impact on regional air quality. According to

1Available at https://www.transportation.gov/priorities/climate-and-sustainability/us-
national-blueprint-transportation-decarbonization. Accessed May 30, 2024.

2Author calculations using US Customs and Port Authority data.
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the Los Angeles Port Authority’s Inventory of Air Emissions (2021), total emis-

sions of NOX rose by over 69 percent between 2020 and 2021, with emissions from

ocean-going vessels increasing by 143 percent. The anchorage and queuing phases

– normally a minor component of total emissions – became dominant contributors

(Figure 1), with containerships accounting for the majority of this growth (Figure 2).

Figure 1: NOx Emissions (tons), by mode
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Source: Los Angeles Port Authority’s Inventory of Air Emissions (2021, 2022).

The environmental risks of this congestion were not hypothetical. In October

2021, just weeks before a policy overhaul, a crude oil pipeline off the coast of Orange

County was ruptured by the anchor drag of a waiting containership. Cleanup and

damages came at an estimated $160 million price tag.3

In response to these operational and environmental pressures, the ports of Los

Angeles and Long Beach introduced a major procedural reform on November 11,

2021. Under the new system, berth access would be assigned based on each ves-

sel’s estimated time of arrival (ETA), rather than physical arrival order. This ad-

justment, coordinated through Pacific Maritime Management Services, marked a

departure from the traditional first-come, first-served protocol. Additionally, ves-

sels were instructed to remain outside a newly established “Safety and Air Quality

Area,” defined as a radius 150 nautical miles from the port area and 50 nautical

miles from Southern Californian coastlines, while awaiting berth assignment.

ETA-based queuing and open-sea idling jointly define the policy effect studied

in this paper. Their net environmental effect is ambiguous a priori. On one hand,

guaranteed berth access could reduce strategic early arrivals and incentivize slower

travel speeds, thus lowering emissions during the voyage phase. On the other, greater

3See NTSB Report MIR-24-01, “Anchor Strike of Underwater Pipeline and Eventual Crude
Oil Release,” Project DCA22FM001.
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Figure 2: NoX Emissions by Vessel Type and Mode
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Source: Los Angeles Port Authority’s Inventory of Air Emissions (2021).

queuing distances and exposure to oceanic currents could increase idling emissions

during the anchorage phase. The ultimate impact hinges on the relative magnitude

of these opposing forces. If vessels hardly changed their speeds and fuel consumption

while remaining adrift off the continental shelf is particularly taxing on emission

levels, this policy could be considered a form of environmental NIMBY-ism, similarly

to cases featured in Morehouse and Rubin (2021) and Zou (2021).4 In this case, ports

would be reaping the commercial benefits of their property rights while exporting

the cost of any resulting air pollution. Alternatively, suppose speed reductions are

considerable or vessels spend less time idling due to improved certainty on port

admittance. In that case, the greater fuel expended during the queuing process may

be negligible in comparison. Under such circumstances, this logistical practice may

4“Not In My BackYard”, a term coined by Mitchell and Carson (1986). Often associated with
cases in which a property owner wants a beneficial economic activity to occur on her property
while expelling the negative externalities of production elsewhere.
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offer oversight bodies, such as the IMO or DOT, an additional policy tool through

which to meet the long-term goals of a decarbonized maritime transport sector.

Evaluating the consequences of this queuing reform requires detailed data on

vessel movements, emissions behavior, and local air quality patterns. To this end,

I assemble a novel dataset that links automatic identification system (AIS) records

of ship activity with port call schedules, emission factor models, and monitor-level

pollution readings. The next section describes the construction of this dataset,

outlining how I infer vessel-level emissions from movement logs and how I map

these to environmental exposure in affected regions.

3. Data & Inference

This section describes the construction of a dataset that links vessel movement,

geographic boundaries, and local air quality to assess the emissions impact of the San

Pedro Bay queuing reform. I combine publicly available records and proprietary data

to construct a panel of individual vessel transits and associated emissions between

November 2019 and November 2022. Full details on matching procedures, data

cleaning, and emissions derivation are provided in the Data Appendix.

3.1. Vessel Movement Data

Port call data were obtained from MarineTraffic (MT), which provide port entry

and exit records for individual vessels. I focus on port visits across major U.S. West

Coast ports – Los Angeles, Long Beach, Oakland, Seattle, and Tacoma – over the

period November 2019 to November 2022. Each record includes timestamps and

geolocations for port arrivals and departures, as well as unique vessel identifiers via

International Maritime Organization (IMO) codes.

To differentiate between active transit and queuing periods near the US coast,

I integrate MT records with high-frequency location signals from the US Coast

Guard’s AIS (Automatic Identification System), accessed via MarineCadastre (MC).

This AIS data provides minute-level records of individual vessel speed, location, and

status within US waters.

Time-invariant ship characteristics were sourced from VesselTracking (VT), in-

cluding gross tonnage and container capacity (TEU). These attributes are used to

infer fuel consumption by vessel type and voyage profile. Vessels are matched across

both sources using IMO codes and voyage timelines. A summary of the matching

logic and queuing definitions is presented in section I of the Data Appendix.
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The cleaned dataset includes 10,035 port visits serviced by 1,061 distinct con-

tainerships, some of which are short transits between US ports. Removing these

vessels and shifting attention to international journeys exclusively brings the sam-

ple to 5,785 visits, serviced by 990 distinct containerships. Table 1 summarizes

vessel and voyage characteristics by port and time period.

Table 1: Summary Statistics of Vessel Voyages

Port Period Visits Vessel Age Max TEU Dwell Time Voyage Time Voyage Speed
Long Beach pre- 1445 10.55 7955.11 99.60 263.27 19.15
Long Beach post- 647 11.29 7843.69 107.14 360.22 15.84
Los Angeles pre- 1778 10.59 7581.44 118.53 276.32 19.49
Los Angeles post- 746 10.83 7419.38 135.44 402.57 15.48
Oakland pre- 179 12.61 5019.64 48.72 253.46 18.55
Oakland post- 181 14.07 3411.29 72.67 324.90 15.75
Seattle pre- 162 12.50 6118.45 68.32 288.18 17.04
Seattle post- 203 13.19 5869.30 63.61 351.39 15.01
Tacoma pre- 355 11.70 7354.04 75.75 322.64 16.23
Tacoma post- 119 12.07 8223.23 127.71 472.65 12.77

Columns 4–8 report averages across vessels engaged in international transit towards the US west coast for a given
major port and sample time window. “Pre-” is defined as prior to November 11th 2021, when the new San Pedro
Bay queuing system was announced for LA and Long Beach. ‘Vessel Age’ is reported in years. ‘Max TEU’ reports
the container capacity of vessels, ‘Dwell Time’ reports the average hours vessels spend handling goods at port.
‘Voyage Time’ details hours between a departure time and the point at which a vessel reappears in US waters.
‘Voyage Speed’ is reported in nautical miles per hour.

To address potential selection into or out of treatment, I construct an additional

subsample of vessels that consistently visited the same ports before and after the

policy. I exclude vessels that exited West Coast service post-policy, entered the sam-

ple only after the policy, or switched destination ports (“switchers”). This balanced

panel comprises 2,418 port visits by 301 vessels.

3.2. Geographic and Trade Data

Port boundaries are defined using Port Statistical Area shapefiles from the U.S.

Army Corps of Engineers (USACE). These geographic polygons are used to delineate

port regions and to calculate vessel queuing durations based on AIS signals.

To measure port-level trade activity, I compile a novel monthly panel of bilateral

container flows from individual port authorities through direct requests and FOIA

submissions. These data capture loaded and empty container inflows and outflows,

covering over 80% of national container throughput (Economides, 2024). Additional

trade value and volume measures are obtained from USA Trade Online and restricted

to containerized flows at the five focal ports.
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3.3. Air Quality Data

Daily air quality readings are sourced from the EPA’s Air Quality Index (AQI)

database. Monitors report concentrations of PM2.5, PM10, CO, SO2, and NO2,

and are distributed across both coastal and inland sites in California and other West

Coast states. Monitor placement is determined by state authorities in accordance

with federal siting and quality standards.

To identify localized impacts, I assign monitors to treatment and control zones

based on their proximity to port centroids. Zone I includes monitors within 25 miles

of a port, while Zone II includes those 25–50 miles away. These distance bands follow

the precedent established by Gillingham and Huang (2021), who identify significant

effects of port emissions on ambient air quality and health outcomes within these

radii. I implement this classification using a ‘ring method’ approach, detailed in

Section 4.1.5

3.4. Fuel Consumption and Emissions Inference

Vessel emissions are inferred by estimating fuel consumption as a function of ship

size (TEU capacity) and average travel speed. I interpolate fuel use values from

TEU-specific curves presented in Rodrigue (2020), and fit a polynomial function

using OLS. Due to known measurement issues at low speeds, I apply a correction

factor for sub-cruise transits, following prior studies. See Appendix A3 for a full

derivation.

I use fuel consumption use estimates, combined with conversion factors from

Czermański et al. (2021), to generate emission levels (CO2, SOx, NOx, PM2.5) for

individual vessel-vovyages, both at during the voyage and queuing stages of transit.

I assume full compliance with IMO 2020 sulfur standards, which defers attention

exclusively to the use of MDO 0.5% fuel, featured in Table 2.

To evaluate the environmental implications of this policy, I construct a high-

frequency dataset that links vessel movements, port operations, and emissions across

key stages of maritime transit. This allows for a detailed comparison of behavior

and environmental outcomes before and after the queuing reform.

5As a robustness check, I incorporate wind direction data from nearby NOAA stations to exam-
ine whether pollution effects are more pronounced on days when wind is directed from anchorage
zones toward populated inland areas. See Appendix A4 for details.
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Table 2: Emissivity Indices for Selected Marine Fuels

[kg/t of Fuel]
Fuel CO2 SOX NOX PM2.5

MDO 0.5% 3206.00 10.50 50.50 2.30
HFO 1.5% 3114.00 31.50 51.00 3.40
HFO 2.0% 3114.00 42.00 51.00 3.40
HFO 3.5% 3114.00 71.50 51.00 3.40

LSHFO 0.5% 3151.00 10.50 51.00 2.30
LSMGO 0.1% 3151.00 2.10 50.50 2.30

LNG 2750.00 ¡0.02 8.40 0.02
Methanol 1375.00 0.00 26.10 0.02

HFO + SCRUBBER + SCR 3176.00 0.84 7.65 0.51

Source: Czermański et al. (2021), based on the assumptions of the Med Atlantic Ecobonus (MAE) Project, MAE
External Cost Calculator Tool.

4. Empirical Strategy & Results

Having constructed a granular dataset that traces vessel movements across distinct

transit phases, I now estimate the causal impact of the San Pedro Bay queuing

reform on emissions intensity and environmental exposure. Upon establishing an

identification strategy, the empirical analysis proceeds in three stages. First, I esti-

mate how the reform altered vessel behavior and emissions intensity during voyage

and queuing phases. Second, I aggregate these phase-specific effects to quantify

changes in global emissions per vessel arrival and show that, despite the narrow

geographic scope of queuing, it accounts for a substantial share of total transit time

and emissions. Finally, I examine localized air quality outcomes and port through-

put to assess whether operational gains translated into broader environmental and

economic impacts. This structure allows me to distinguish direct improvements

in vessel efficiency from systemic shifts in port activity, illustrating how logistical

reforms can shape both emissions intensity and cumulative pollution burdens.

4.1. Identification Strategy

To estimate the causal effect of the San Pedro Bay queuing reform on vessel behav-

ior and emissions, I employ a difference-in-differences (DiD) design. The treatment

group consists of container ships serving the ports of Los Angeles and Long Beach,

where the reform was jointly announced and implemented between November 11th

and 16th, 2021. I compare outcomes at these ports to a set of untreated West

Coast ports, Oakland, Seattle, and Tacoma. These maritime hubs were not sub-

ject to analogous queuing policies. These ports serve as counterfactuals due to

their geographic proximity, similar trade exposure, and concurrent experience of

pandemic-era macroeconomic shocks.
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The DiD framework is well-suited to this setting for three reasons. First, the

timing of the reform offers a quasi-experimental setup. The new queue system was

announced and implemented within a five-day window, minimizing the scope for an-

ticipatory behavioral responses. Second, treated and control voyages exhibit parallel

trends in key pre-treatment outcomes, such as voyage speed, supporting the assump-

tion that their emission trajectories would have evolved similarly in the absence of

the reform (Figure 3).6 COVID-related disruptions to vessel movements and port

congestion occurred near-simultaneously across West Coast ports, as documented

in contemporaneous shipping bulletins and maritime traffic reports. I exclude Gulf

and East Coast ports, which faced lagged or regionally distinct recovery dynamics.

Figure 3: Parallel Trends in Voyage Speeds
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Third, I mitigate concerns about endogenous port choice or selective entry by

constructing a balanced panel of vessels that consistently served the same ports be-

fore and after the policy. This approach excludes route “switchers” and new entrants

whose selection into specific port networks may be correlated with treatment timing.

For example, in response to the reform, a vessel might initially set course for Oak-

6See Appendix Section B1 for further evidence of the parallel trends assumption being satisfied.
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land to manipulate its position in the virtual queue before ultimately rerouting to

Los Angeles. If such strategic routing were widespread among new or switching ves-

sels, it would bias the estimated treatment effect downward, understating the true

extent of post-policy slow steaming and overstating the resulting efficiency gains.

By excluding potential switchers, entrants, and exiters, I ensure that the estimated

treatment effects reflect behavioral adjustments among a stable set of vessels.

While pre-treatment vessel characteristics differ modestly across ports (Table 1),

the DiD design does not require equivalence in levels. I instead require stability

of those inherent differences over time. Including vessel–route fixed effects (ϕS
io)

absorbs persistent variation in vessel size, age, and route-specific behavior, while

time fixed effects (ϕS
t ) absorb time-varying shocks common to all ports, such as fuel

prices, holiday effects, or macroeconomic disruptions. To further address concerns

about differential pandemic recovery trajectories, the inclusion of ϕS
t ensures that

any regionally common or global COVID shocks are accounted for.7 This structure

supports identification via within-day comparisons between treated and control ves-

sels operating under otherwise similar conditions.

I measure emissions intensity by stage of transit. Vessels in US waters are as-

signed status codes indicating whether they are underway (U), maneuvering (M),

at anchor (A), or at berth (B). I define local emissions efficiency as emissions per

hour of activity across these stages. Using local emissions efficiency – represented

by emissions per hour
(

eLipt
hL
ipt

)
– summed across these four local transit stages,

eLipt
hL
ipt

=
eUipt + eMipt + eAipt + eBipt
hU
ipt + hM

ipt + hA
ipt + hB

ipt

, (1)

I aggregate the underway, maneuvering, and anchoring stages into a “queuing” stage

(Q) and analyze it separately from berthing. To measure global emissions, I take

these measures jointly with voyage (V) emissions of each ship from their respective

ports of departure, eVipt. Global emissions efficiency is then defined as

eGipt
hG
ipt

=
eVipt + eQipt

hV
ipt + hQ

ipt

(2)

To exploit the quasi-experimental nature of this policy change – announced and

7Examples include labor availability, fuel constraints, and seasonal congestion.
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introduced within a 5-day window – I use the following DiD specification:

Y S
iodt = δS1 Td + δS2Dt + δS3 (Td ×Dt) + ϕS

io + ϕS
t + µirpt, (3)

where i identifies the individual vessel, io indicates the vessel–voyage route serviced

repeatedly over time, d represents the destination port, and t is the calendar date

upon departure from port o. Td and Dt are treatment and post-period indicators,

respectively. The fuel efficiency outcome variable, Y S
iodt, is emissions-per-hour on a

given transit stage, S ∈ {V,Q,G} and can be decoupled for any particular stage of

service. The inclusion of vessel-route fixed effects (ϕS
io) accounts for persistent differ-

ences across port pairings, while year-month fixed effects (ϕS
t ) absorb time-varying

shocks common to all ports, such as fuel price changes, seasonality in shipment

volumes, or key macroeconomic events.

The coefficient of interest is δG3 . A negative and significant δ̂G3 would imply

that the reform improved global emissions efficiency – suggesting that guaranteed

queuing positions encouraged slower steaming and reduced emissions during transit.

Conversely, a non-negative δ̂G3 would indicate that the emissions savings from slower

steaming were offset or reversed by increased emissions during offshore idling. Re-

ferring to Eq. (2), a decline in eVipt/h
V
ipt would be consistent with voyage slowdowns,

while a rise in eQipt/h
Q
ipt would reflect emissions from extended idling or reposition-

ing farther from shore. This ambiguity underscores the importance of decomposing

global effects into their component stages, as well as considering broader air quality

outcomes in the empirical analysis that follows.

4.2. Voyage Emission Effects

Changes in vessel voyage speed constitute a key channel through which the queuing

reform may affect maritime emissions. Table 3 presents difference-in-differences es-

timates of the policy’s effect on international voyage speeds (measured in nautical

miles per hour). Each specification includes vessel–voyage and year–month fixed

effects, with standard errors clustered by vessel–voyage route. Column (1) reports

average treatment effects for all qualifying port arrivals. Column (2) restricts atten-

tion to voyages that do not engage in transshipment activity, defined as subsequent

short-haul trips in US waters, following an international arrival. Column (3), the

preferred specification, further excludes vessels that change their port-pair rout-

ing after policy implementation. This mitigates the influence of route-switching or

strategic entry/exit, which may otherwise bias the estimated effects (Klotz and Be-

razneva, 2022). The results indicate that the policy reduced average voyage speeds
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by approximately 15.9 percent in the preferred specification.8 This substantial de-

cline in travel velocity suggests that vessels altered operating behavior, potentially

through speed reduction strategies, to comply with the new queue system.

Table 3: Difference-in-Difference Estimates – Voyage Speed

Nautical Miles Per Hour
(1) (2) (3)

Post–Policy 0.2489∗∗∗ 0.2215∗∗∗ 0.2509∗∗∗

(0.0606) (0.0783) (0.0926)

Treatment 0.0453∗∗ 0.0423∗ 0.0788
(0.0228) (0.0237) (0.1147)

DiD -0.2091∗∗∗ -0.1620∗∗∗ -0.1730∗∗∗

(0.0288) (0.0330) (0.0398)

Vessel–Voyage FE ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓

Observations 7,192 5,785 2,418
Average Speed, Pre-Policy 18.98 19.14 19.65
R2 0.85 0.71 0.62

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering within vessel–voyage lanes of transport
service. Each observation is a distinct voyage arriving on the US west coast between Nov 2019 and Nov 2022.
Column 1 reports the broad diff-in-diff treatment effect on vessels. Column 2 excludes transshipping activity –
short subsequent journeys between US ports after their initial arrival from a foreign port of origin. Column 3 only
includes Column 2 vessel voyages that maintained the same international trade routes pre- and post- policy. Each
regression uses a logged dependent variable. To limit extreme outlier distortions, I exclude any voyages with travel
speeds less than the 25th percentile minus three times the interquartile range (75th percentile - 25th percentile)
or higher than the 75th percentile plus three times the interquartile range (Davies and Jeppesen, 2015). “Average
Speed, Pre-Policy” refers average vessel voyage travel speed destined for treated US ports before 11/11/2021.

Table 4 reports the policy’s impact on total and normalized CO2 emissions. Fo-

cusing on international voyages with no transhipping, Column (2) reports a 9.2

percent reduction in voyage emissions. Column (3), which mirrors the restrictions

in Table 3, provides evidence of a similar decline. In Columns (4) and (5), I shift

focus to intensity-adjusted outcomes, emissions per hour and per knot traveled, re-

spectively. These measures help assess whether emission reductions stemmed solely

from longer voyage durations or also from improved fuel efficiency. Both measures

show statistically significant declines of 23.4 and 8.9 percent, respectively. These

findings imply that operational adjustments extended efficiency gains with respect

to fuel consumption, driven by an overall slowdown in voyage speeds. Although

the results are framed in terms of CO2, the linear relationship between fuel use and

other pollutant types implies similar log-differenced reductions across NOx, SOx,

and PM emissions (Czermański et al., 2021).

I next employ an event study specification to assess the dynamic effects of the

queuing reform on voyage emissions, focusing exclusively on international voyages

8The coefficient on the DiD term corresponds to a semi-elasticity. For a log-level regression,
percentage effects are computed as eβ − 1.
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Table 4: Difference-in-Difference Estimates – Voyage Emissions

CO2 Emissions Em. per Hour Em. per Knot
(1) (2) (3) (4) (5)

Post–Policy 0.0794 -0.0532 -0.0837 0.1356 -0.1152
(0.0573) (0.0780) (0.1004) (0.1475) (0.0890)

Treatment 0.1043∗∗ 0.0822∗∗ 0.0784 0.1265 0.0477
(0.0412) (0.0364) (0.0998) (0.2107) (0.0970)

DiD -0.2073∗∗∗ -0.0964∗∗ -0.0993∗ -0.2663∗∗∗ -0.0932∗∗

(0.0305) (0.0435) (0.0542) (0.0795) (0.0468)

Vessel–Voyage FE Yes Yes Yes Yes Yes
Year–Month FE Yes Yes Yes Yes Yes

Observations 7,192 5,785 2,418 2,418 2,418
R2 0.97 0.95 0.91 0.75 0.83

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering within vessel–voyage lanes of transport
service. Each observation is a distinct voyage arriving on the US west coast between Nov 2019 and Nov 2022.
Column 1 reports the broad diff-in-diff treatment effect on vessels. Column 2 excludes transshipping activity – short
subsequent journeys between US ports after their initial arrival from a foreign port of origin. Column 3 only includes
Column 2 vessel voyages that maintained the same international trade routes pre- and post- policy. Columns 4 and
5 shift focus to per hour and per nautical mile measures of emissivity, respectively. Each regression uses a logged
dependent variable. To limit extreme outlier distortions, I exclude any voyages with travel speeds less than the
25th percentile minus three times the interquartile range (75th percentile - 25th percentile) or higher than the 75th
percentile plus three times the interquartile range (Davies and Jeppesen, 2015).

that maintained consistent service patterns before and after the policy change. Fig-

ure 4 plots the estimated treatment effects relative to October 2021. In the imme-

diate aftermath of the policy’s implementation, vessels exhibit a temporary decel-

eration in transit speed, with reductions in emissions per hour that persist through

mid-2022. These effects begin to attenuate after July 2022 and fully dissipate by

September 2023, suggesting mean reversion in vessel behavior.

Figure 4: Event Study (TWFE) - Emissions per hour
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The temporal profile of these estimates indicates that the policy’s impact on long-

haul voyage emissions is short-lived. While vessels initially adjust their operations

in response to the ETA-based queuing system, these changes are not sustained over
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time. This transient pattern implies limited potential for enduring decarbonization

gains on the voyage stage of international transit. The next section shifts attention

to the queuing leg of the voyage and documents a robust and persistent reduction

in local emissions. When considered jointly, these findings suggest that the queuing

system meaningfully reduces vessels’ contribution to local air pollution, even while

long-distance shipping emissions return to pre-policy norms.

4.3. Queuing Emission Effects

To isolate the emissions effect of the queuing leg of each voyage, I calculate total CO2

emissions for each vessel while in US waters. This stage encompasses maneuvering

near the continental shelf, idling offshore, and anchoring when permitted. Figure 5

illustrates the distribution of hourly emissions by treatment status before and after

the policy.

Following the introduction of the queuing system, emissions among treated ves-

sels decline markedly, whereas no such trend is observed among control ports (Fig-

ure 5a). The increased variance among control observations is partly attributable

to lower sample sizes during the post-period (Figure 5b).

I formalize these comparisons in a difference-in-differences framework (Table 5),

restricting attention to vessels on stable international routes and with observable

queuing data. Column 1 reveals a statistically significant 26.1% reduction in emis-

sions during the queuing stage. This aligns with the hypothesis that increased

certainty about berth availability prior to arrival reduces unnecessary offshore loi-

tering. Columns 2 and 3 indicate that treated vessels spent less time queuing and

moved at faster average speeds, suggesting a more streamlined approach to port en-

try. Emissions per nautical mile also fell (Column 4), consistent with more efficient

engine use. Although vessels in the treatment group appear to have traveled greater

distances while waiting (Column 5), the associated increase in hourly emissions

(Column 6) is not statistically significant. This suggests that any increased offshore

repositioning was modest and did not substantially erode the emissions gains from

reduced queuing durations.

These findings underscore the local emissions benefits of the ETA-based queu-

ing system. By reducing idle time and improving port-entry efficiency, the policy

significantly cut emissions generated within US coastal waters. I next quantify how

localized gains translate relative to the full course of international voyages.
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Figure 5: CO2 emissions by hour across queued vessels
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(b) Number of Vessel-Voyages by Subsample
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4.4. Global Emission Effects

To capture the full emissions impact of the queuing reform, I aggregate each vessel’s

voyage and queuing stages into a unified global transit measure. This approach

allows for a more comprehensive assessment of environmental outcomes, extending

beyond the limits of US territorial waters. As illustrated in Figure 6, queuing

previously accounted for a non-trivial share of emissions, distance, and transit time

for vessels calling at West Coast ports.

Prior to the policy’s implementation, shipping congestion intensified markedly.
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Table 5: Difference-in-Difference Estimates – Queuing Emissions

CO2 Emissions Duration Speed Em. per Knot Distance Em. per Hour
(1) (2) (3) (4) (5) (6)

Post–Period -0.3073 -0.3294 0.2374∗ 0.1182 -0.4255∗ 0.0221
(0.2343) (0.2623) (0.1416) (0.1742) (0.2421) (0.1071)

Treatment 1.287∗∗∗ 1.586∗∗∗ -0.6597∗∗∗ -0.5567∗∗ 1.843∗∗∗ -0.2993∗∗

(0.1974) (0.2875) (0.2068) (0.2496) (0.3852) (0.1210)

DiD -0.3046∗∗∗ -0.4047∗∗∗ 0.2852∗∗∗ -0.4341∗∗∗ 0.1295 0.1000
(0.0832) (0.1214) (0.0781) (0.0889) (0.1027) (0.0671)

Vessel–Voyage FE ✓ ✓ ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓ ✓ ✓

Observations 2,177 2,177 2,177 2,177 2,177 2,177
R2 0.59 0.55 0.55 0.50 0.44 0.66

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering within vessel–voyage lanes of transport
service. Each observation is a distinct queuing experience of a vessel arriving on the US west coast between Nov 2019
and Nov 2022. I filter only for vessel voyages that maintained the same international trade routes pre- and post-
policy and drop any observations that lack matching vessel movement data. To limit extreme outlier distortions,
I exclude any voyages with emissions less than the 25th percentile minus three times the interquartile range (75th
percentile - 25th percentile) or higher than the 75th percentile plus three times the interquartile range (Davies and
Jeppesen, 2015).

Figure 6: Queuing Share of Global Containership Transit for US West Coast

Control Treatment

2020 2021 2022 2020 2021 2022

10

20

30

40

50

Year-Month

S
ha

re
 (

%
)

Total Emissions Transit Distance Transit Time

Both treatment and control ports experienced a near tripling in queuing durations

relative to total transit time. However, this trend reversed sharply only at ports

adopting the ETA-based queuing system. By assigning queue positions upon depar-

ture from the prior port of call, the system curtailed offshore loitering and halted

the rise in queuing’s share of total travel distance. In contrast, ports outside the re-

form, such as Oakland, Tacoma, and Seattle, exhibited continued growth in queuing

intensity through 2022.

To quantify the broader environmental implications, I estimate a difference-in-

differences model combining emissions from both voyage and queuing stages (Table

6). Column 1 indicates a 10% decline in global CO2 emissions among treated routes.

Emissions per hour (Column 2) remain statistically unchanged, suggesting that the
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intensity of fuel use did not fall per unit of time. However, emissions per nautical

mile fell by 13% (Column 3), implying efficiency gains via reduced idling and more

purposeful transit patterns.

Table 6: Difference-in-Difference Estimates – Global Emissions

CO2 Emissions Em. per Hour Em. per Knot
(1) (2) (3)

Post–Period -0.2021∗∗ 0.2380∗∗ -0.0946
(0.0923) (0.1124) (0.0932)

Treatment 0.1687∗ -0.1307 -0.1836∗

(0.0897) (0.1945) (0.1109)

DiD -0.1052∗∗ -0.0298 -0.1394∗∗∗

(0.0459) (0.0712) (0.0491)

Vessel–Voyage FE ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓

Observations 2,175 2,175 2,175
R2 0.90 0.78 0.72

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering within vessel–voyage lanes of transport
service. Each observation is a distinct global transit experience of a vessel arriving on the US west coast between
Nov 2019 and Nov 2022. I filter only for vessel voyages that maintained the same international trade routes pre-
and post- policy and drop any observations that lack matching vessel movement data. To limit extreme outlier
distortions, I exclude any voyages with emissions less than the 25th percentile minus three times the interquartile
range (75th percentile - 25th percentile) or higher than the 75th percentile plus three times the interquartile range
(Davies and Jeppesen, 2015).

Although vessels slowed temporarily across the voyage leg of transit, these gains

were undermined by increased repositioning activity while waiting offshore. This

is consistent with the previously documented rise in queuing-stage emissions per

hour. This dynamic reflects a reallocation of time. Rather than loitering aimlessly

near port, vessels adjusted speeds en-route and arrived more precisely in line with

assigned berthing slots. Given the added admittance certainty provided, the policy

induced a shift in time allocation from uncoordinated congestion to time-optimized

voyage planning.

I identify a significant reduction in vessels’ carbon emissions, primarily driven by

strategic behaviour in the queuing leg of vessel voyages. However, contrasting this

outcome against evidence from local air quality monitors across West Coast ports

highlights a prominent countervailing effect.

4.5. Local Air Quality

While the queuing policy yielded measurable reductions in global emissions, its im-

pact on local air quality near ports remains less clear. This section investigates

whether reduced vessel emissions in the vicinity of port areas translated into im-

proved ambient air quality around the Los Angeles–Long Beach (San Pedro Bay)

complex.
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To isolate local effects, I adopt a spatial difference-in-differences approach, which

compares outcomes for sites near the treatment area with those in an adjacent outer

zone (Linden and Rockoff, 2008; Boarnet et al., 2017; McDermott et al., 2019; Gupta

et al., 2020). Specifically, I use a “ring-method”, to compare the inner radius of a

region relative to a control group that represents a geospatial outer ring. Following

a similar port emissions analysis by Gillingham and Huang (2021), I set the inner

zone (Zone I) as a set of air quality monitors within 25 miles of the San Pedro Bay

port complex centroid. The outer zone (Zone II) includes monitors located between

25 and 50 miles from the same point.

This concentric-ring approach captures near-port pollution outcomes relative to

a geographically proximate, yet non-adjacent, baseline. However, if some pollutants

disperse beyond the inner zone, blurring treatment boundaries, the outer ring may

act as an imperfect control. To address this concern, I supplement the analysis

with a second comparison. In this setting, I shift attention to monitors located

within 25 miles of other major West Coast ports, which were far more likely to

be unaffected by the queuing policy. The drawback of this comparison lies in its

inability to account for region-specific shocks unique to the Los Angeles–Long Beach

area, such as unrelated shifts in industrial activity or weather patterns, that could

independently influence local air quality.

Figure 7 visualizes monitor locations across port regions. Red markers represent

Zone I monitors, while blue markers denote Zone II sites.9

Figure 7: AQI Monitor Local Sites

Note: Each polygon depicts a port area. Red sites represent zone I monitors. Blue sites represent zone II monitors.

I estimate the policy’s effect on local air emissions using the following difference-

9Distances are computed using the Vincenty formula, which accounts for the Earth’s ellipsoidal
shape.
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in-differences specification:

Yipt = α + γ1Tp + γ2Dt + γ3 (Tp ×Dt) + εipt, (4)

where Yipt is the pollution concentration recorded at monitor i, in port region p, on

day t. The indicator Tp equals 1 for treated sites (Zone I monitors within 25 miles

of the San Pedro Bay complex). Dt equals 1 for post-policy dates (Nov 11, 2021

onward). The coefficient γ3 captures the average treatment effect on local pollution

following the queuing policy.

Using particulate matter (PM) measures of pollutant concentrates, I find ev-

idence of broad increases in emissions across monitors adjacent to the port area,

relative to the outer zone of monitors (Table 7). PM10 emissions rose by a 25.8

percent and PM2.5 rose by 5.5%. These results suggest a worsening in ambient air

quality near the port despite reduced vessel idling. Sulfur dioxide (SO2), on the

contrary, declined slightly, although the estimate is statistically insignificant. This

finding is notable, as SO2 emissions are more directly attributable to maritime fuel

combustion than particulate matter. The muted SO2 response is consistent with

earlier evidence of reduced emissions during the queuing phase, and may indicate

that port-level pollution increases were driven by auxiliary sources of local economic

activity rather than vessel operations alone.

Table 7: Difference-in-Difference, Control: San Pedro Bay, Zone-II

Dep. Variable: PM10 PM10−2.5 PM2.5 SO2
(1) (2) (3) (4)

Post–Period -0.1898∗ 0.2919 -0.3486 0.3764∗

(0.0160) (0.0582) (0.2103) (0.0311)

Treated -0.3151∗∗∗ -0.5804∗∗∗ 0.0032 -0.4552∗

(0.0018) (0.0035) (0.0014) (0.0370)

DiD 0.2302∗∗ 0.1582∗∗ 0.0541∗ -0.0966
(0.0052) (0.0070) (0.0045) (0.0349)

Day FE ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓

Observations 6,949 1,303 14,471 3,853
R2 0.22 0.40 0.25 0.19

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is
a distinct day-monitor-port emission type reading. ‘Post-Period’ is equal to 1 for dates November 11th 2021 to
October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile radius (Zone
I) of the centroid of the San Pedro Bay port complex. The relevant control group consists of monitors within 25-50
miles of the same reference point (Zone II).

Referring to particulate matter emissions in Table 8, port-to-port difference-

in-difference comparisons yield further evidence of a statistically significant rise in
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Table 8: Difference-in-Difference, Control: Seattle/Oakland, Zone-I

Dep. Variable: PM10 PM10−2.5 PM2.5 SO2
(1) (2) (3) (4)

Post–Period 0.0164 -0.3332 0.4302 0.1943
(0.2726) (0.2562) (0.3694) (0.1447)

Treated 0.5940 1.426∗∗∗ 0.5539∗∗ -0.2624∗∗

(0.2523) (0.0051) (0.1093) (0.0510)

DiD 0.2863∗∗∗ 0.9336∗∗∗ 0.0107 -0.3240∗

(0.0264) (0.0040) (0.0113) (0.1001)

Day FE ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓

Observations 3,330 925 27,184 8,802
R2 0.38 0.71 0.22 0.07

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is
a distinct day-monitor-port emission type reading. ‘Post-Period’ is equal to 1 for dates November 11th 2021 to
October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile radius (Zone
I) of the centroid of the San Pedro Bay port complex. The relevant control group consists of monitors within 25
miles of the Port of Seattle and the Port of Oakland.

emissions upon the introduction of the new port queuing system. Notable deviations

from the zone-based results listed in Table 7 include a near doubling of particulate

matter between 2.5 and 10 micrometers in diameter. Additionally, a somewhat

significant decline in sulfur dioxide is detected.10

Considering both sets of results, these findings suggest that while the queuing

reform curbed emissions from individual vessels, aggregate pollution levels near San

Pedro Bay increased following the policy’s introduction. The rise in particulate mat-

ter near the port, despite muted changes in shipping-related sulfur emissions, hints at

a broader intensification of local economic activity. This raises the possibility that,

although the policy improved efficiency at the vessel level, the commercial appeal

of greater queuing certainty may have also stimulated growth in port throughput.

The next section investigates this commercial response, focusing on changes in port

traffic volumes and their implications for local and regional environmental outcomes.

4.6. Commercial Port Activity

Although the ETA-based queue system improved the carbon efficiency of individual

vessel voyages, increased scheduling certainty yielded offsetting behavioral responses.

For example, should guaranteed queue positions be offered at a given port, this may

present a better fit for ‘just-in-time’ production processes that many firms rely upon.

10See Appendix B3 for mirrored estimates with respect to carbon monoxide (CO), nitrogen
dioxide (NO2), nitrogen oxides (NOx), and ozone gases.
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This increased reliability diverted additional maritime commerce toward Los Angeles

and Long Beach relative to other West Coast ports.

If the resulting growth in cargo throughput outpaces reductions in per-vessel

emissions, the policy may generate a net rise in aggregate port-related pollution.

To assess this possibility, I estimate difference-in-differences regressions comparing

trade outcomes at San Pedro Bay to those observed at similar West Coast ports,

before and after the policy’s implementation.

Table 9: Difference-in-Difference, Commercial Activity

Dep. Variable: Trade (USD) Trade (KG) Loaded Containers Total Containers
(1) (2) (3) (4)

Post–Period -0.1077 -0.1662 -0.2055∗∗∗ -0.2146∗∗∗

(0.1596) (0.1164) (0.0459) (0.0560)

Treatment 1.019∗∗∗ 0.7442∗∗∗ 1.041∗∗∗ 1.126∗∗∗

(0.0392) (0.0312) (0.0124) (0.0123)

DiD 0.0864 0.1310∗ 0.1575∗∗∗ 0.2192∗∗∗

(0.0849) (0.0674) (0.0249) (0.0253)

Month-Year FE ✓ ✓ ✓ ✓

Observations 600 600 600 600
R2 0.62 0.59 0.95 0.96

Note: ***: 0.01, **: 0.05, *: 0.1. White Standard-errors, robust to the presence of heteroskedasticity. Each
observation is a year-month of containerized trade outcomes at the port level between January 2012 and June 2024.
‘Post-Period’ is equal to 1 for dates after November 2021. ‘Treatment’ is equal to 1 for ports of San Pedro Bay. The
relevant control group consists of the ports of Oakland, Seattle, and Tacoma. Dependent variables are in log-form.
‘Trade (USD)’ represents the real value of containerized exports and imports, deflated using the St Louis FED’s
Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in U.S. City Average. ‘Trade
(KG)’ represents the total kilogram weight of containerized imports and exports. ‘Loaded Containers’ uses bilateral
loaded container traffic flows reported directly by individual ports as a measure of market share/throughput. ‘Total
Containers’ includes bilateral port flows of both loaded and empty containers.

Table 9 shows that commercial activity at San Pedro Bay rose significantly rela-

tive to control ports following the queuing reform. The increase ranges from roughly

8% for trade value to over 21% for total container volumes, with the largest relative

growth observed in empty container movement. Even when restricting the sam-

ple to the COVID-era window surrounding the reform, results are consistent and

suggestive of a structural increase in throughput.

Although gains point to efficiency improvements, they also suggest an intensifi-

cation of activity that could counteract local environmental benefits.

5. Welfare Analysis

This section quantifies the local welfare consequences of the queuing reform at San

Pedro Bay, focusing exclusively on emissions experienced in the vicinity of the ports

of Los Angeles and Long Beach. Two distinct effects are assessed: (i) a reduction

in queuing emissions per international vessel voyage following the introduction of
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ETA-based scheduling, and (ii) an overall increase in port emissions attributable to

diverted trade flows from competing West Coast ports.

5.1. Monetized Effects of Queuing Emissions

To monetize the reduction in carbon dioxide emissions, I apply a local social cost

of carbon (SCC) of $185 per metric ton of CO2, based on the damage functions

and discounting framework developed by Rennert et al. (2022). Although the SCC

is often interpreted as a measure of global damages, this value is increasingly used

to reflect marginal domestic harm under U.S. policy analysis. It integrates recent

advances in damage modeling, socioeconomic forecasting, and discounting, and is

consistent with the EPA’s revised 2022 valuation of $190 per ton (EPA, 2022).11

Referring to Table 5, the policy reduced emissions per voyage by approximately

26.3 percent. Letting τ̂ denote the proportional emissions reduction, the counter-

factual emissions in the absence of treatment are computed as

Êcounterfactual =

∑
i∈treated, postEi

1 + τ̂
, Êreduction = Êcounterfactual −

∑
i∈treated, post

Ei.

where Ei represents emissions across the queuing stage of transit for each vessel i,

summed across international transits during the post-reform period.12 This amounts

to taking the sum of emissions across all treated vessel-voyages in the post-period,

servicing international transportation, and scaling this sum by the inverse of the

emissions reduction rate, exp(−0.3046).

I estimate a reduction of 238, 199 metric tons of CO2 from November 2021

through 2022. Using a social cost of $185 per ton of carbon, the monetized benefits

of the queuing system change on per-vessel emissions accumulate to 44.1mn USD

(Figure 8).

To put this in scale, the first phase of the Ocean-Going Vessel At-Berth Regula-

tion, implemented across multiple Californian ports to lower docked vessel emissions,

yielded savings of $558mn USD in medical costs per year (Gillingham and Huang,

2021). Given the narrower extent to which this queue system was adopted, and its

low cost of implementation, a broader implementation of an ETA-based approach

may help further the aims of the California Air Resources Board. However, due to

11This estimate represents a substantial upward revision from prior SCC values—such as the
Interagency Working Group’s (IWG) central estimate of $51 per ton or Nordhaus’s earlier DICE-
based estimates in the $31–$50 range (Nordhaus, 2017; IWG, 2021).

12Given that voyage emissions occur outside of US waters, deep at sea, it is arguable that social
costs of carbon are significantly lower.
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Figure 8: Cumulative social benefit of per-vessel emission reduction
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Note: Based on author’s calculations, specific to the queuing stage of vessel transit.

the isolated manner in which the ETA-based system was introduced, San Pedro Bay

effectively triggered trade diversion from other West Coast ports. This contributed

to an overall increase in emissions across multiple types of pollutants.

5.2. Monetized Emissions Effects of Queue System

To construct damage estimates, I use data on emission inventories of Los Angeles

and Long Beach ports, estimates of proportional changes in PM2.5, NOx, and SO2,

and the AP3 integrated assessment model, featured in Clay et al. (2019). The AP3

model is an air pollution model that estimates changes in county-level air pollution

based on changes in emissions. Peer-reviewed concentration-response functions are

applied, based on calculated exposures and US census data, which enables exposures

to be converted to physical effects. Most of the marginal changes in damages yielded

by AP3 are due to increased mortality and the social cost of carbon.

Upon running the model using its 2014 configuration, it provides marginal dam-

ages of pollutants emitted by ground level, low stack and medium sources for all

3,109 counties included. Ground level sources include road dust, fugitive emissions,

vehicles. Low stack sources would consist of small boilers, heating, ventilation, air

conditioning, and port equipment with vertical ventillation in the 5-10 meter range.

Medium stacks are attributed to industrial stacks and larger exhausts, normally

10-30 meters in vertical height. Given my suggestion of greater commercial acitivty

at the port, consisting of greater rates of container restacking, forklift use, crane
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movements, and intermodal transport exchange (e.g. trucks and rail), I examine

the implications of relying on ‘low’ and ‘ground’ level emissions.

I detect air quality changes across monitors within 25 miles of the San Pedro

Bay port complex. This set of treated monitors occupies two US counties, Los

Angeles and Orange County. I assign a rate of marginal damage for each emission

type (PM2.5, NOX, and SO2) based on a cross-county weighted average. Weights

are determined by each county’s share of total landmass featured within the 25

mile centroid radius. To estimate the environmental cost of this policy, interact a

marginal damages (2014 USD per ton) with the change in total emissions tonnage.

Ideally, I would use the total change in emissions in the 25 mile radius surround-

ing the port centroid. However, air quality monitors dotted around this space only

report ambient pollution rates, air quality, rather than total emission inventory for

the region. I elect to use total volume of 2022 port emissions as the next best al-

ternative, sourced from each port’s respective annual ‘Inventory of Air Emissions’

report. These inventories include contributions by ocean-going vessels, harbor craft,

cargo handling equipment, locomotives, and heavy-duty vehicles. The estimated

monetized environmental damages that this system yields, due to inadvertently at-

tracting competitor ports’ traffic, should therefore be considered a baseline estimate.

It does not account for added commercial traffic travelling within the 25 mile ra-

dius of the treatment area, that likely increases associated environmental damages

further, through air quality degradation.

Table 10 displays the key metrics I use to determine estimated environmental

damages associated with the introduction of ETA-based queuing in San Pedro Bay.

Table 10: Queue System Damages - Key Parameters

Parameter Year PM2.5 NOX SO2

MD, Area, USD per short ton 2014 905,736.7 153,412.9 413,502.9

MD, Low Stack, USD per short ton 2014 711,536.6 111,232.7 318,144.1

LA Port Em. Inventory, metric tons 2022 113 5,765 136

Long Beach Em. Inventory, metric tons 2022 157 7,686 252

Emission Change, ∆Êlow, % 2022 0.011 0.119 -0.277

Emission Change, ∆Êhigh, % 2022 0.056 0.205 -0.092

Source: Marginal damages (MD) averages, using AP3 estimates, are based on the assumption of constant population
density across the subsections of Los Angeles and Orange County considered. Los Angeles Inventory Of Air Emissions
2022, Table ES.2 and Long Beach 2022 Air Emissions Inventory, Table ES.2. High and low point estimates of PM2.5

and SO2 emission changes stem from columns (3) and (4) of Tables 7 and 8, respectively. NOX estimates are
presented in Appendix B3. All six coefficients stem from log-level regressions and are interpretable only upon being
fed into exp(β̂)− 1.
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The resulting environmental costs are calculated by interacting these marginal

damage rates with the estimated tonnage changes. Area-based damages range be-

tween $218–474 million, while low-stack estimates range from $155–344 million (all

in 2022 USD).13 These costs represent a lower bound, as they exclude inland freight

and secondary pollution associated with higher throughput beyond the port zone.

Although the magnitude of local damages is nontrivial, they remain smaller than the

$558 million in annual savings attributed to the first-phase of California’s At-Berth

Regulation (Gillingham and Huang, 2021). As discussed in the next section, queuing

reform may yield offsetting economic benefits via enhanced scheduling certainty for

shippers.

5.3. Net Impact and Distributional Considerations

A complete welfare assessment of the queuing reform would require structural mod-

eling of trade diversion effects, supply chain reoptimization, and resulting localized

pollution impacts – all of which lie beyond the scope of this paper. Instead, I offer

a partial equilibrium view that emphasizes the trade-offs between environmental

externalities and commercial throughput gains at San Pedro Bay.

Shapiro (2016) supports the view that greater trade and transportation flows

yield trade-related welfare gains, undermined by associated emission-related losses

of higher transport service volume. From a global perspective, trade gains out-

weigh emission losses by a significant margin. Supposing US ports broadly adopt

an ETA-based queuing system, this may limit within-country trade diversion, while

potentially attracting trade flows from other countries. Reduced idling time and

greater certainty surrounding port admittances raises the effective supply of global

shipping capacity, adding downward pressure to prevailing global freight rates. Fur-

thermore, given that per-vessel emissions would decline, this would mitigate the

countervailing welfare losses associated with transport service volume growing. The

associated welfare gain for the overall US population is therefore likely positive,

however, the welfare effect of a local populace bearing the brunt of this transport

service influx is unclear. Residents of Los Angeles and Orange Counties would still

bear a disproportionate share of the damages, despite reaping only diffuse or indirect

economic benefits. Under an isolated introduction of ETA-based queuing, I estimate

emission-related welfare losses ranging between $155-474mn in 2022.14

13I adjusted the list AP3 values, expressed in 2014 USD per ton, for inflation using the CPI-U
for all items excluding food and energy.

14Census tract data for 2022 reports an estimated population of 7.5 million for the 25 mile radius
surrounding the San Pedro Bay ports. This implies a cost of additional port emissions ranging
between 20-62 USD per capita.
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6. Conclusion

This paper evaluates the environmental consequences of a novel queuing system

change introduced at the Ports of Los Angeles and Long Beach in late 2021. By

assigning vessels a queue position at their point of departure, based on estimated

time of arrival, rather than upon arrival, the policy altered longstanding opera-

tional incentives, enabling ships to slow-steam and synchronize more efficiently with

berth availability. Through the use of high-frequency vessel tracking data, port call

records, and emissions estimates, I document that the reform substantially reduced

offshore idling and emissions intensity.

Average queuing time fell by 33.3 percent, local emissions per vessel declined

by 26.3 percent, and voyage emissions dropped by 9.5 percent. These results show

that logistical coordination alone can drive measurable decarbonization in maritime

freight, without requiring capital-intensive retrofitting or broad regulatory man-

dates. While voyage speed reductions proved temporary, dissipating within a year,

gains in queuing efficiency persisted throughout the sample window. Although it

represents a narrow share of the geography of each voyage, the queuing stage ac-

counts for 10–50 percent of the total transit time and 5–25 percent of emissions,

depending on the length of the voyage. Upon controlling for both reduced idling

and slower steaming, I estimate that the policy lowered international voyage emis-

sions, per vessel, by 10 percent and emissions per nautical mile by 13 percent.

Despite these per-vessel improvements, I show that air quality near the ports de-

teriorated. EPA monitor data reveal a post-policy increase in local pollution levels

relative to other West Coast port regions. I attribute this to increased commercial

throughput at San Pedro Bay, which saw a post-policy relative rise of 14-24.5 per-

cent, depending on the trade volume metric. These results underscore a key distinc-

tion. Operational improvements can reduce emissions intensity, but not necessarily

total emissions, particularly when they increase a port’s attractiveness and traffic

volume. In the case of San Pedro Bay, AP3 model estimates suggest environmental

damages, mostly linked to increased mortality risk, in the range of $155-474mn for

the year of 2022.

These findings offer both encouragement and caution. They demonstrate that

modest reforms to port logistics can yield substantial efficiency and emissions gains.

However, they also underscore the backfiring risks of localized interventions, espe-

cially when those reforms amplify commercial activity in highly populated areas. As

maritime regulators seek to decarbonize global shipping, queuing reform represents
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a cost-effective, scalable strategy, best implemented as part of a broader package of

emissions and exposure controls.

Future research should assess the applicability of ETA-based queuing reforms at

smaller or less congested ports, where idling is less pronounced and gains may be

more limited. Moreover, further attention is needed to quantify the welfare trade-

offs between the indirect commercial gains and localized pollution burdens of greater

port traffic in densely populated port communities. While queuing reform enhances

operational efficiency and port competitiveness, its net welfare impact hinges on

how commercial gains are distributed relative to the spatial incidence of pollution

exposure.
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A Data Appendix

A1. Vessel Traffic

I construct voyage-level data on emissions by combining vessel position records with

port call data. These measures are developed through multiple stages of cleaning and

alignment using high-frequency vessel tracking data provided by MarineCadastre

(MC) and port call data provided by MarineTraffic (MT).

Port Statistical Areas

I identify major container ports based on Panjiva records of twenty-foot equiv-

alent unit (TEU) throughput.15 Geospatial boundaries for these ports – referred

to as Port Statistical Areas – are obtained from the U.S. Army Corps of Engineers

(USACE). These polygons are used to identify the precise moment a vessel enters

or exits a West Coast port. I treat the Ports of Los Angeles and Long Beach as a

single port complex, assigning them a shared centroid for constructing radius-based

treatment zones.

Matching MarineTraffic (MT) and MarineCadastre (MC)

MarineTraffic (MT) provides global port call records, detailing each vessel’s de-

parture timestamp, destination, and estimated travel distance. However, these data

do not distinguish between the voyage and queuing segments of transit. In many

instances, vessels idle just offshore for extended periods, which can bias voyage du-

ration and speed estimates downward. To isolate the voyage segment, I match each

MT departure to the first MC AIS ping in U.S. waters. MC records vessel position

data at one-minute intervals, which enables near-exact identification of this arrival

point. Each IMO-identified vessel is matched based on the time window between

port departure and subsequent arrival at a U.S. West Coast port. This allows me

to compute the speed and distance of the voyage segment. The queuing segment is

defined as the interval between a US water arrival point and the moment of port

admittance. Port admittance is defined as the timestamp when a vessel crosses into

the relevant USACE port polygon and comes to a complete stop in a berthing area.

Together, these three events − departure, offshore arrival, and berthing − allow me

to reconstruct the full transit path of each vessel. In Figure A1, I discern which

transits in US waters represent international journeys − the key focus of this study.

15See https://www.logisticsmgmt.com/article/top 30 u.s. ports big ports got bigger in 2020
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Figure A1: Match Status by Origin and Group
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Distances between departure and offshore arrival are computed using Vincenty

ellipsoid geodesic methods to account for Earth’s curvature. Queuing distances are

calculated using the Haversine formula applied to sequential AIS pings.

After assembling the panel of West Coast-bound voyages, I merge in vessel reg-

istry data from VesselTracking.net, which reports TEU capacity and build year.

To ensure comparability, I restrict attention to IMO-certified containerships with

verified TEU capacities in the VesselTracking registry. Vessels with military, recre-

ational, or non-container cargo designations are excluded. A small subset of port

call vessels are not detected in US waters within their respective prescribed time

windows. I label these cases as “missing”. The overall rate of missingness is below

1 percent of the MT sample, with a notable increase in July 2020, concentrated

around California port calls.

To address extreme outliers in voyage speed, I follow Davies and Jeppesen (2015),

defining outliers as values outside a range bounded by the 25th percentile minus three

times the interquartile range (IQR) and the 75th percentile plus three times the IQR

of observed average speeds. After removing outliers, the final dataset includes 10,035

voyages from 1,061 distinct containerships.

Many of these voyages involve vessels making multiple port calls at nearby lo-

cations on the West Coast. For my second set of analysis, I restrict attention to

international voyages by discarding transits between US, Canadian, and Mexican

ports. This restriction yields a sample of 5,671 international port visits by 990

distinct vessels.
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The potential for strategic routing responses by vessel operators in reaction to the

policy presents an identification concern. To circumvent queuing restrictions, opera-

tors may redirect inbound vessels to initially arrive at untreated ports, subsequently

proceeding to treated destinations under reduced policy exposure. To address this,

I construct a balanced panel restricted to vessels that consistently serviced the same

treated ports in both the pre- and post-policy periods. I exclude “switcher” vessels

that changed their initial US port of arrival, “entrant” vessels that first appear only

after the policy, and “exit” vessels that cease West Coast activity post-policy.

This balanced sample forms the basis for my main results and consists of 2,354

port visits by 301 distinct vessels with uninterrupted service to treated ports across

both periods. Given the nature of commercial shipping, where route assignments

are often governed by long-term capacity optimization rather than short-term oper-

ational discretion, many switchers, entrants, and exits likely reflect routine network

adjustments rather than policy-induced selection. This interpretation is supported

by the robustness of estimated effects: regressions that include the full international

transit sample – including all route-changing vessels – yield results that are nearly

indistinguishable from those based on the balanced panel.

A2. Fuel Consumption Function

To estimate vessel-level daily fuel consumption, I recover functional relationships

between vessel speed (knots) and fuel usage (tons/day) by digitizing the curves

displayed in Figure A2, sourced from Rodrigue (2020).16 These curves report fuel

consumption across five container ship classes, categorized by TEU capacity ranges.

Using a digital extraction tool, I convert each curve into coordinate point data and

assign TEU bin midpoints to define ship size. The 10,000+ TEU category is omitted

from estimation due to the absence of a meaningful midpoint. I construct a grid of

1,000 equidistant speed points ranging from 0 to 25 knots. For each speed value,

I compute predicted fuel consumption using the digitized functions, generating a

dataset of speed (X), TEU capacity (Z), and corresponding fuel consumption levels

(Y ). I then estimate the following bivariate polynomial regression model:

Yi = α + β1Xi + β2Zi + β3X
2
i + β4Z

2
i + β5Xi × Zi + β6X

2
i × Zi + εi. (5)

The estimated coefficients {α̂, β̂1, . . . , β̂6} yield a flexible function for predicting

16I do not observe engine types across vessels necessary to use a naval engineering approach
featured in Corbett et al. (2009) and Lugovskyy et al. (2023). Ship size suffices in applied studies
of vessel emissions (Walsh and Bows, 2012).
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daily fuel consumption as a function of vessel speed and TEU capacity. The result-

ing surface is convex in speed and exhibits a non-linear increase with vessel size,

consistent with basic energy cost scaling principles in maritime transport.

Figure A2: Fuel Consumption by Speed and TEU Capacity

Source: Rodrigue (2020). The Geography of Transport Systems, Chapter 4, Transportation and Energy.

Figure A3 compares the fitted curves from Equation 5 (dashed lines) with the

original digitized consumption functions (solid lines) across TEU capacity bins. The

polynomial model provides a close approximation in the empirically relevant speed

range of 10–25 knots, where most observed vessel operations occur. To reinforce this,

I overlay port-specific average voyage speeds as red points. These fall predominantly

within the region where interpolated and digitized functions tightly align, suggesting

the model performs well over the support of the observed data. At slower speeds

(e.g., < 10 knots), the fitted model diverges more significantly from source curves.

In these regions, corresponding to low-speed maneuvering behavior, I supplement

the analysis using external engineering estimates, as detailed in the next subsection.

A3. Queuing Emissions

To estimate queuing activity emissions, I apply an adjustment procedure for vessels

operating at low or stationary speeds, which are not well captured by standard

cruising-based fuel consumption functions. I follow the approach of Bai et al. (2020),

who estimate emissions during the maneuvering, anchoring, and low-speed cruising

phases using high-resolution data from port areas in coastal China. This study

decomposes local vessel behavior into distinct speed stages and reports associated

emission concentrations as vessels accelerate from stationary to maneuvering states.

Figures A4 and A5 illustrate the distribution of vessel speeds by operational

mode and the corresponding variation in gaseous emissions.
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Figure A3: Fuel Consumption Function
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Note: Dashed lines represent imputed functions with TEU fixed at the midpoint of ranges associated with solid
line. Solid line functions were mapped using graph readers applied to figures featured in Rodrigue (2020). Solid red
points correspond to port-specific average travel speeds of voyages destined for US West Coast ports.

Figure A4: Speed by Stage

Source: Bai et al. (2020), Gaseous Emissions from a Seagoing Ship under Different Operating Conditions in the
Coastal Region of China, Atmosphere, Vol. 11(3), pp 305.

For each vessel i located within US waters at time t, moving at speed Sipt,

and carrying capacity Ci, I calculate emissions between consecutive AIS pings t and

t′ < t at one-minute resolution. Assuming compliance with IMO 2020 sulfur content

limits, I apply fuel-based emissivity indices (in kg/ton of fuel) as featured in Table 2.
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Figure A5: Emissions by Speed-Stage

Source: Bai et al. (2020), Gaseous Emissions from a Seagoing Ship under Different Operating Conditions in the
Coastal Region of China, Atmosphere, Vol. 11(3), pp 305.

For each interval between AIS signals, I compute emissions in three steps:

If Sipt > 10:

1. Estimate fuel consumption: Φipt = Φ(Sipt, Ci) (tons/day)

2. Scale to emissions: Φipt · Emissivity Indices (kg/day)

3. Scale to time window:

δipt =

(
t− t′

24

)
· Φipt · Emissivity Indices

If Sipt ≤ 10, I fix fuel consumption at Φ(10, Ci) but apply an emissions scaling
factor (ESF) to reflect reduced pollutant concentrations at lower speeds. This fac-
tor is estimated from Bai et al. (2020) using reported NOX concentrations, which
decrease non-linearly from 700 ppm at 10 knots to 450 ppm at 0 knots.

ESF (Sipt) = 64.29 + 7.54 · Sipt − 0.40 · S2
ipt

Emissions during low-speed transits are therefore computed as:

δipt =

(
t− t′

24

)
· Φ(10, Ci) · ESF (Sipt) · Emissivity Indices

For static berth activity, I recommend the use of a scaling factor proposed by

Hulskotte and Denier van der Gon (2010) which receive frequent use in the maritime

logistics literature (Jalkanen et al., 2012; Ju and Hargreaves, 2021; Schwarzkopf

et al., 2021). This is a linear function of the gross tonnage of vessels times the hours
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spent stationary (Table A1). For the purposes of this study, assessing voyage and

queuing stages of transit, I do not include berthing activity in broader analysis.

Table A1: Estimate of Fuel Consumption by GT-Dwell Hours

Type of ship Fuel Consumption Rate Average hotelling time
(kg fuel/1000 GT h) at berth (hours)

Oil Tankers 19.3 28
Chemical and other tankers 17.5 24
Bulk Carriers 2.4 52
Containers 5.0 21
General Cargo 5.4 25
Ferries and RoRo 6.9 24
Reefers 24.6 31
Other 9.2 46

Source: Hulskotte and Denier van der Gon (2010). Fuel Consumption and Associated Emissions from Seagoing
Ships at Berth Derived from Onboard Survey, Atmospheric Environment, Vol. 44(9), pp 1229–1236.

This procedure yields estimates of vessel emissions during queuing, anchored,

and maneuvering stages, disaggregated by pollutant type and vessel identity. These

values are used to evaluate policy impacts on localized maritime emissions.

A4. Air Quality Monitoring and Wind Direction

To assess the localized impact of vessel emissions, I use air quality monitoring data

from the U.S. Environmental Protection Agency (EPA), spatially restricted to coun-

ties adjacent to major West Coast container ports. Counties are assigned to specific

ports based on geographic proximity and metropolitan integration, yielding three

focal port groups: Los Angeles and Long Beach (LA+LB), Oakland, and Seattle.

Each EPA monitoring site is geocoded using its latitude and longitude, and its dis-

tance to the centroid of the associated port polygon – defined via USACE Port

Statistical Areas – is computed using Vincenty ellipsoid formulas to account for

Earth’s curvature.

Following the zonal exposure methodology in Gillingham and Huang (2021),

I define two port-proximate monitoring bands: Zone I includes monitors located

within 25 miles of a port centroid, while Zone II includes those between 25 and 50

miles. Monitors beyond 50 miles are excluded from the primary analysis. These

distance bins are used to compare pollutant levels across nested geographic areas

that vary in proximity to port emissions sources.

To visualize exposure geography, I generate spatial plots with color-coded mark-

ers for each monitor, indicating zone assignment. Pollution measurements are ag-

gregated to the monitor-day level, and pollutant names are harmonized across label

variants. For example, entries such as “PM2.5 – Local Conditions” and “Accept-

able PM2.5 AQI & Speciation Mass” are recoded under the unified label “PM2.5.”
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The final panel includes daily site-level concentrations for PM2.5, PM10, NO2, NOX ,

SO2, CO, and ozone. To estimate heterogeneity in pollution exposure as a f unction

of prevailing wind direction, I incorporate hourly meteorological data from the Na-

tional Oceanic and Atmospheric Administration (NOAA) for 2019–2023. I extract

hourly wind speed and bearing (0–360°) from six weather stations near the San Pe-

dro Bay anchorage region, including Catalina Airport, which lies southwest of the

port complex. Wind direction is defined as the origin point of air movement (e.g.,

90° denotes wind from the east). Missing wind readings are imputed within station

using last observation carried forward (in both forward and reverse directions).

To determine directional exposure, I compute whether each daily average wind

vector intersects the convex polygon that bounds the Zone I monitors for the LA+LB

port complex. For each day t, I project a geodesic line segment from the Catalina

station’s coordinates using the inverse of the daily wind bearing. If the projected

line intersects the Zone I polygon, as displayed in Figure A6, the corresponding date

is classified as a “downwind” day. This procedure yields a daily binary indicator for

downwind exposure, which I merge with the monitor-day pollution panel.

Figure A6: Projected Wind Vectors and Port-Adjacent Exposure Area

Note: Each line represents a daily-averaged wind direction originating from the Catalina Airport monitor. Red
lines indicate wind vectors that intersect the defined Zone I emission polygon surrounding the San Pedro Bay port
complex (Los Angeles and Long Beach). These are labeled as “downwind” days in the estimation framework. Gray
lines represent non-intersecting vectors (”non-downwind” days). Base map tiles sourced from OpenStreetMap.

42



B Empirical Appendix

B1. Parallel Trends Assumption

Figure B7: Voyage-Leg Activity

(a) Total Emissions, Logged
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Note: Containership voyage speeds destined for San Pedro Bay (red) and control the ports of Seattle, Tacoma, and
Oakland (blue). The vertical solid line marks the earliest announcement of the new queuing system (November 11,
2021). The vertical dashed line marks the start of the system’s implementation (November 16, 2021). Solid lines
show separately estimated restricted cubic spline functions for the periods before and after the queueing system
implementation, and within San Pedro Bay and control port areas. The panel y-axis has been truncated to aid
visual inspection, though the spline functions are estimated on the full sample of observations.
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Figure B8: Queue-Leg Activity

(a) Total Emissions, Logged
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Note: Containership voyage speeds destined for San Pedro Bay (red) and control the ports of Seattle, Tacoma, and
Oakland (blue). The vertical solid line marks the earliest announcement of the new queuing system (November 11,
2021). The vertical dashed line marks the start of the system’s implementation (November 16, 2021). Solid lines
show separately estimated restricted cubic spline functions for the periods before and after the queueing system
implementation, and within San Pedro Bay and control port areas. The panel y-axis has been truncated to aid
visual inspection, though the spline functions are estimated on the full sample of observations.
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B2. DiD – All International Voyages

I relax the sample to allow for vessels that are rotated across various routes. I both

broaden my sample size and obtain relatively similar results to those in Tables 4

and 5.

Table B2: Difference-in-Difference Estimates – Voyage Emissions

Total Emissions Duration Speed Em. per Knot Distance Em. per Hour
(1) (2) (3) (4) (5) (6)

Post–Period -0.0532 -0.2067∗∗ 0.2215∗∗∗ -0.0770 0.0239 0.1445
(0.0780) (0.0888) (0.0783) (0.0705) (0.0336) (0.1238)

Treatment 0.0822∗∗ -0.0115 0.0423∗ 0.0513 0.0309∗∗ 0.0936∗

(0.0364) (0.0252) (0.0237) (0.0326) (0.0136) (0.0552)

DiD -0.0964∗∗ 0.1659∗∗∗ -0.1620∗∗∗ -0.1007∗∗∗ 0.0042 -0.2627∗∗∗

(0.0435) (0.0377) (0.0330) (0.0389) (0.0181) (0.0658)

Vessel–Voyage FE ✓ ✓ ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓ ✓ ✓

Observations 5,785 5,785 5,785 5,785 5,785 5,785
R2 0.95 0.89 0.71 0.89 0.98 0.83

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering within vessel–voyage lanes of transport
service. Each observation is a distinct international voyage experience of a vessel arriving on the US west coast
between Nov 2019 and Nov 2022. To limit extreme outlier distortions, I exclude any voyages with emissions less
than the 25th percentile minus three times the interquartile range (75th percentile - 25th percentile) or higher than
the 75th percentile plus three times the interquartile range (Davies and Jeppesen, 2015).

Table B3: Difference-in-Difference Estimates – Queuing Emissions

Total Emissions Duration Speed Em. per Knot Distance Em. per Hour
(1) (2) (3) (4) (5) (6)

Post–Period -0.4646∗∗ -0.5030∗∗ 0.0733 0.1206 -0.5852∗∗ 0.0384
(0.1969) (0.2179) (0.1507) (0.1542) (0.2306) (0.0920)

Treatment 0.7243∗∗∗ 0.8548∗∗∗ -0.4183∗∗∗ -0.3460∗∗∗ 1.070∗∗∗ -0.1305∗∗

(0.0970) (0.1082) (0.0746) (0.0776) (0.1296) (0.0539)

DiD -0.2125∗∗∗ -0.2865∗∗∗ 0.3617∗∗∗ -0.3787∗∗∗ 0.1662∗ 0.0741
(0.0754) (0.1000) (0.0801) (0.0755) (0.0946) (0.0563)

Vessel–Voyage FE ✓ ✓ ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓ ✓ ✓

Observations 5,090 5,090 5,089 5,090 5,090 5,090
R2 0.70 0.70 0.72 0.66 0.63 0.78

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering within vessel–voyage lanes of transport
service. Each observation is a distinct queuing experience of a vessel arriving on the US west coast between Nov
2019 and Nov 2022. To limit extreme outlier distortions, I exclude any voyages with emissions less than the 25th
percentile minus three times the interquartile range (75th percentile - 25th percentile) or higher than the 75th
percentile plus three times the interquartile range (Davies and Jeppesen, 2015).
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Figure B9: Event Study (TWFE) - Emissions per hour
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Table B4: Difference-in-Difference Estimates – Global Emissions

CO2 Emissions Em. per Hour Em. per Knot
(1) (2) (3)

Post–Period -0.1980∗∗∗ 0.3240∗∗∗ -0.0454
(0.0741) (0.0929) (0.0738)

Treatment 0.1225∗∗∗ -0.0556 -0.0863∗∗∗

(0.0383) (0.0508) (0.0321)

DiD -0.0980∗∗ -0.1131∗ -0.1398∗∗∗

(0.0385) (0.0585) (0.0412)

Vessel–Voyage FE ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓

Observations 5,226 5,226 5,226
R2 0.94 0.85 0.81

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering within vessel–voyage lanes of transport
service. Each observation is a distinct global transit experience of a vessel arriving on the US west coast between
Nov 2019 and Nov 2022. To limit extreme outlier distortions, I exclude any voyages with emissions less than the
25th percentile minus three times the interquartile range (75th percentile - 25th percentile) or higher than the 75th
percentile plus three times the interquartile range (Davies and Jeppesen, 2015).

These findings strongly support those of the main section of the paper, which

suggests that strategic route switching behaviour to avoid the new queuing sys-

tem did not occur at a broad scale. This is likely due to scheduling frictions and

contractual obligations limiting the ability of transport operators to remap routes

within a year of this unanticipated policy introduction. Instead, the large number

of switchers, entrants, and exiters appears to be business as usual. Vessels are rou-

tinely rotated across distinct shipping routes with the goal of maximizing container

capacity usage (Wang et al., 2013).
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B3. Air Quality Monitoring and Wind Direction

I list results of the DiD on a wider set of air quality monitor readingsa and find

additional evidence supportive of port-adjacent air quality worsening relative to

regions further out from the San Pedro Bay Complex.

Table B5: Difference-in-Difference, Control: San Pedro Bay, Zone-II

Dep. Variable: CO NO2 NOx Ozone
(1) (2) (3) (4)

Post–Period 0.0976 0.1382 0.2977 -0.2403
(0.2539) (0.1670) (0.2551) (0.1635)

Treated 0.0189 -0.0392∗∗ 0.0819∗∗∗ -0.1824∗∗∗

(0.0031) (0.0014) (0.0012) (0.0001)

DiD 0.1089∗∗ 0.1213∗∗∗ 0.1121∗∗∗ 0.0386∗∗∗

(0.0019) (0.0015) (0.0013) (4.14 × 10−5)

Day FE ✓ ✓ ✓ ✓
Month-Year FE ✓ ✓ ✓ ✓

Observations 17,804 21,127 21,141 18,294
R2 0.30 0.33 0.32 0.49

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is
a distinct day-monitor-port emission type reading. ‘Post-Period’ is equal to 1 for dates November 11th 2021 to
October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile radius (Zone
I) of the centroid of the San Pedro Bay port complex. The relevant control group consists of monitors within 25-50
miles of the same reference point (Zone II).

Table B6: Difference-in-Difference, Control: Seattle/Oakland, Zone-I

Dep. Variable: CO NO2 NOx Ozone
(1) (2) (3) (4)

Post–Period 0.3445∗∗ 0.3377∗∗ 0.5386∗∗ -0.4985∗∗

(0.0639) (0.0639) (0.1071) (0.0712)

Treated -0.2141∗ 0.3427∗∗ 0.3074 0.2007∗∗∗

(0.0502) (0.0579) (0.1054) (0.0078)

DiD 0.1577∗∗∗ 0.1085∗∗ 0.1864∗∗∗ 0.0402∗∗

(0.0078) (0.0145) (0.0019) (0.0073)

Day FE ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓

Observations 17,788 21,738 20,732 17,385
R2 0.29 0.41 0.36 0.41

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is
a distinct day-monitor-port emission type reading. ‘Post-Period’ is equal to 1 for dates November 11th 2021 to
October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile radius (Zone
I) of the centroid of the San Pedro Bay port complex. The relevant control group consists of monitors within 25
miles of the Port of Seattle and the Port of Oakland.

In my difference-in-differences estimation, I use daily average wind direction

measures stemming from an island southwest of the San Pedro Bay anchorage zone
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to implement a triple difference strategy (DiDiD). I compare treated and control

zones across pre- and post-policy periods, conditional on whether the region was

downwind of queuing vessels on a given day.

Formally, the estimating equation is:

log(Yizpt) = α + γ1Didzt + γ2Downwindt + γ3(Didzt × Downwindt) + δz + λmy + εizpt

where Yizpt is the daily average pollutant concentration at monitor i in zone z, located

near port p on date t; δz and λmy denote zone fixed effects and month-by-year fixed

effects, respectively.

By focusing on variation in exposure conditional on wind direction, this approach

helps distinguish local pollution impacts caused by vessel activity from broader

regional trends in air quality.

Table B7: Triple Difference, Control: San Pedro Bay, Zone-II

Dep. Variable: CO NO2 NOx Ozone
(1) (2) (3) (4)

DiD 0.2229 0.2944 0.3171 0.0127∗

(0.0801) (0.0875) (0.1034) (0.0016)

Downwind 0.0809 0.0760 0.0847 0.0190
(0.0212) (0.0575) (0.0659) (0.0047)

Post–Period 0.1038 0.1374 0.2957 -0.2356
(0.2489) (0.1556) (0.2418) (0.1630)

Treated 0.0191 -0.0391∗∗ 0.0820∗∗∗ -0.1824∗∗∗

(0.0031) (0.0014) (0.0011) (0.0002)

DiD × Downwind -0.1569 -0.2376 -0.2815 0.0356∗∗

(0.1073) (0.1181) (0.1402) (0.0021)

Day FE ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓

Observations 17,804 21,127 21,141 18,294
R2 0.30670 0.33114 0.32134 0.48829

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is a
specific emission type reading for a distinct day-monitor-port. ‘Post-Period’ is equal to 1 for dates November 11th
2021 to October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile
radius (Zone I) of the centroid of the San Pedro Bay port complex. ‘Downwind’ is equal to 1 for days in which the
average wind direction − calculated from hourly readings at Catalina Island − indicates that winds are blowing
from outside toward the centroidal boundary of the San Pedro Bay port complex, thereby carrying emissions into
the 25-mile area (Zone I) containing the monitors. The relevant control group consists of monitors within 25-50
miles of the same reference point (Zone II).
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Table B8: Triple Difference: San Pedro Bay, Zone-II

Dep. Variable: PM10 PM10−2.5 PM2.5 SO2
(1) (2) (3) (4)

DiD 0.3683 0.1973∗ 0.1393 0.0749
(0.0754) (0.0239) (0.0785) (0.0920)

Downwind 0.1200 0.0792∗∗ 0.1820 0.0370
(0.0519) (0.0058) (0.0404) (0.0197)

Post–Period -0.1782∗∗ 0.3084 -0.3229 0.3649∗∗

(0.0086) (0.0580) (0.2056) (0.0240)

Treated -0.3148∗∗∗ -0.5801∗∗∗ 0.0033 -0.4552∗

(0.0019) (0.0035) (0.0014) (0.0370)

DiD × Downwind -0.1878 -0.0687 -0.1188 -0.2339
(0.1073) (0.0311) (0.1154) (0.0781)

Day FE ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓

Observations 6,949 1,303 14,471 3,853
R2 0.22125 0.40325 0.26357 0.19047

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is
a distinct day-monitor-port emission type reading. ‘Post-Period’ is equal to 1 for dates November 11th 2021 to
October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile radius (Zone
I) of the centroid of the San Pedro Bay port complex. ‘Downwind’ is equal to 1 for days in which the average wind
direction − calculated from hourly readings at Catalina Island − indicates that winds are blowing from outside
toward the centroidal boundary of the San Pedro Bay port complex, thereby carrying emissions into the 25-mile
area (Zone I) containing the monitors. The relevant control group consists of monitors within 25-50 miles of the
same reference point (Zone II).

Table B9: Triple Difference, Control: Seattle/Oakland, Zone-I

Dep. Variable: CO NO2 NOx Ozone
(1) (2) (3) (4)

DiD 0.2676∗∗∗ 0.1871∗∗∗ 0.3101∗∗∗ -0.0492
(0.0165) (0.0163) (0.0169) (0.0176)

Downwind 0.0152 -0.0072 -0.0011 -0.0126∗∗

(0.0150) (0.0092) (0.0094) (0.0014)
Post–Period 0.3448∗∗ 0.3341∗∗ 0.5345∗∗ -0.4977∗∗

(0.0645) (0.0655) (0.1099) (0.0740)
Treated -0.2140∗ 0.3427∗∗ 0.3074 0.2007∗∗∗

(0.0502) (0.0579) (0.1054) (0.0078)
DiD × Downwind -0.1510∗∗ -0.1079 -0.1699∗∗ 0.1226∗∗

(0.0224) (0.0421) (0.0223) (0.0280)

Day FE ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓

Observations 17,788 21,738 20,732 17,385
R2 0.28698 0.40638 0.35839 0.41138

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is
a distinct day-monitor-port emission type reading. ‘Post-Period’ is equal to 1 for dates November 11th 2021 to
October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile radius (Zone
I) of the centroid of the San Pedro Bay port complex. ‘Downwind’ is equal to 1 for days in which the average wind
direction − calculated from hourly readings at Catalina Island − indicates that winds are blowing from outside
toward the centroidal boundary of the San Pedro Bay port complex, thereby carrying emissions into the 25-mile
area (Zone I) containing the monitors. The relevant control group consists of monitors within 25 miles of the Port
of Seattle and the Port of Oakland.
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Table B10: Triple Difference, Control: Seattle/Oakland, Zone-I

Dep. Variable: PM10 PM10−2.5 PM2.5 SO2
(1) (2) (3) (4)

DiD 0.3422∗∗ 0.9566∗∗∗ -0.0222 -0.2105
(0.0566) (0.0055) (0.0235) (0.1301)

Downwind 0.0363 0.0761∗∗ 0.0510 0.0131
(0.0325) (0.0023) (0.0575) (0.0128)

Post–Period 0.0191 -0.3122 0.4389 0.1937
(0.2707) (0.2576) (0.3753) (0.1432)

Treated 0.5947 1.428∗∗∗ 0.5538∗∗ -0.2623∗∗

(0.2530) (0.0049) (0.1095) (0.0508)
DiD × Downwind -0.0760 -0.0488∗ 0.0458 -0.1569∗

(0.0425) (0.0042) (0.0186) (0.0508)

Day FE ✓ ✓ ✓ ✓
Year–Month FE ✓ ✓ ✓ ✓

Observations 3,330 925 27,184 8,802
R2 0.38376 0.71023 0.22236 0.06929

Note: ***: 0.01, **: 0.05, *: 0.1. Standard-errors are robust to clustering by monitor zone. Each observation is
a distinct day-monitor-port emission type reading. ‘Post-Period’ is equal to 1 for dates November 11th 2021 to
October 30th 2022. ‘Treatment’ is equal to 1 for air pollutant concentration monitors within a 25-mile radius (Zone
I) of the centroid of the San Pedro Bay port complex. ‘Downwind’ is equal to 1 for days in which the average wind
direction − calculated from hourly readings at Catalina Island − indicates that winds are blowing from outside
toward the centroidal boundary of the San Pedro Bay port complex, thereby carrying emissions into the 25-mile
area (Zone I) containing the monitors. The relevant control group consists of monitors within 25 miles of the Port
of Seattle and the Port of Oakland.
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